The Generations – 1G, 2G, 3G, 4G

The cellular wireless communications industry witnessed tremendous growth in the past decade with over four billion wireless subscribers worldwide. The first generation (1G) analog cellular systems supported voice communication with limited roaming. The second generation (2G) digital systems promised higher capacity and better voice quality than did their analog counterparts. Moreover, roaming became more prevalent .

The two widely deployed second-generation (2G) cellular systems are GSM (global system for mobile communications) and CDMA (code division multiple access). As for the 1G analog systems, 2G systems were primarily designed to support voice communication. In later releases of these standards, capabilities were introduced to support data transmission.

However, the data rates were generally lower than that supported by dial-up connections. The ITU-R initiative on IMT-2000 (international mobile Telecommunications 2000) paved the way for evolution to 3G. A set of requirements such as a peak data rate of 2 Mb/s and support for vehicular mobility were published under IMT-2000 initiative. Both the GSM and CDMA camps formed their own separate 3G partnership projects (3GPP and 3GPP2, respectively) to develop IMT-2000 compliant standards based on the CDMA technology. The 3G standard in 3GPP is referred to as wideband CDMA(WCDMA) because it uses a larger 5MHz bandwidth relative to 1.25MHz bandwidth used in 3GPP2’s cdma2000 system. The 3GPP2 also developed a 5MHz version supporting three 1.25MHz subcarriers referred to as cdma2000-3x. In order to differentiate from the 5MHz cdma2000-3x standard, the 1.25MHz system is referred to as cdma2000-1x or simply 3G-1x.

The first release of the 3G standards did not fulfill its promise of high-speed data transmissions as the data rates supported in practice were much lower than that claimed in the standards. A serious effort was then made to enhance the 3G systems for efficient data support. The 3GPP2 first introduced the HRPD (high rate packet data) system that used various advanced techniques optimized for data traffic such as channel sensitive scheduling, fast link adaptation and hybrid ARQ, etc. The HRPD system required a separate 1.25MHz carrier and supported no voice service. This was the reason that HRPD was initially referred to as cdma2000-1xEVDO (evolution data only) system. The 3GPP followed a similar path and introduced HSPA (high speed packet access) enhancement to the WCDMA system. The HSPA standard reused many of the same data-optimized techniques as the HRPD system.

A difference relative to HRPD, however, is that both voice and data can be carried on the same 5MHz carrier in HSPA. The voice and data traffic are code multiplexed in the downlink. In parallel to HRPD, 3GPP2 also developed a joint voice data standard that was referred to as cdma2000-1xEVDV (evolution data voice). Like HSPA, the cdma2000-1xEVDV system supported both voice and data on the same carrier but it was never commercialized. In the later release of HRPD, VoIP (Voice over Internet Protocol) capabilities were introduced to provide both voice and data service on the same carrier. The two 3G standards namely HSPA and HRPD were finally able to fulfill the 3G promise and have been widely deployed in major cellular markets to provide wireless data access.

A View of the different generations!

First generation (1G).

AMPS/ETACS handsets in the 1980s required low-cost microcontrollers to manage the allocation of multiple RF (radio frequency) channels (833 × 30 kHz channels for AMPS, 1000 × 25 kHz channels for ETACS) and low-cost RF components that could provide acceptable performance at 800/900 MHz.

Second generation (2G). GSM, TDMA, and CDMA handsets in the 1990s required low-cost digital signal processors (DSPs) for voice codecs and related baseband processing tasks, and low-cost RF components that could provide acceptable performance at 800/900 MHz, 1800 MHz, and 1900 MHz.

Third generation (3G). W-CDMAand CDMA2000 handsets require—in addition to low-cost microcontrollers and DSPs—low-cost, low power budget CMOS or CCD image sensors; low-cost, low power budget image and video encoders; low-cost, low power budget memory; low-cost RF components that can provide acceptable performance at 1900/2100 MHz; and high-density battery technologies.

Beyond 3G systems While HSPA and HRPD systems were being developed and deployed, IEEE 802 LMSC (LAN/MAN Standard Committee) introduced the IEEE 802.16e standard for mobile broadband wireless access. This standard was introduced as an enhancement to an earlier IEEE 802.16 standard for fixed broadband wireless access. The 802.16e standard employed a different access technology named OFDMA (orthogonal frequency division multiple access) and claimed better data rates and spectral efficiency than that provided by HSPA and HRPD.

Evolution to 4G

4G Technology is basically the extension in the 3G technology with more bandwidth and services offers in the 3G. But at this time nobody exactly knows the true 4G definition. Some people say that 4G technology is the future technologies that are mostly in their maturity period. The expectation for the 4G technology is basically the high quality audio/video streaming over end to end Internet Protocol. If the Internet Protocol (IP) multimedia sub-system movement achieves what it going to do, nothing of this possibly will matter. WiMAX or mobile structural design will become progressively more translucent, and therefore the acceptance of several architectures by a particular network operator ever more common.

Many Technologies appear in many different flavours and have many diverse tags attached to them, but that does not really indicate that they are moving in dissimilar tracks. The technologies that fall in the 4G categories are UMTS, OFDM, SDR, TD-SCDMA, MIMO and WiMAX to the some extent.

 4G Technology offers high data rates that will generate new trends for the market and prospects for established as well as for new telecommunication businesses. 4G networks, when tied together with mobile phones with in-built higher resolution digital cameras and also High Definition capabilities will facilitate video blogs


About Sri

An Electronics Engineer by profession. But as a hobbyist I'm drawn towards various topics which is what this blog is all about. :)


2 thoughts on “The Generations – 1G, 2G, 3G, 4G

  1. Doesn’t matter what “G” we have here! Our net connections still suuuuuuuuuuuuck!

    Posted by ABiliTy | January 3, 2012, 8:33 pm

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 527 other followers

Blog Stats


Blog categories..

On My twitter now !

This is me :)

%d bloggers like this: